2 Principle of Mathematical Induction

Let we want to show that property P holds for all natural numbers. To prove this property, P using mathematical induction, following are the steps:
Basic Step:
First show that property P is true for 0 or 1 .
Induction Hypothesis:
Assume that property P holds for n .
Induction step:
Using induction hypothesis, show that P is true for $n+1$.
Then by the principle of mathematical induction, P is true for all natural numbers.

Examples

Example 1

Prove using mathematical induction, $n^{4}-4 n^{2}$ is divisible by 3 for $n>=0$.
Basic step:
For $n=0$,
$n^{4}-4 n^{2}=0$, which is divisible by 3 .
Induction hypothesis:
Let $n^{4}-4 n^{2}$ is divisible by 3 .
Induction step:

$$
\begin{aligned}
(n+1)^{4}-4(n+1)^{2} & =\left[(n+1)^{2}\right]^{2}-4(n+1)^{2} \\
& =\left(n^{2}+2 n+1\right)^{2}-(2 n+2)^{2} \\
& =\left(n^{2}+2 n+1+2 n+2\right)\left(n^{2}+2 n+1-2 n-2\right) \\
& =\left(n^{2}+4 n+3\right)\left(n^{2}-1\right) \\
& =n^{4}+4 n^{3}+3 n^{2}-3-4 n-n^{2}=n^{4}+4 n^{3}+2 n^{2}-4 n-3 \\
& =n^{4}+4 n^{3}-4 n^{2}+6 n^{2}-4 n-3 \\
& =n^{4}-4 n^{2}+6 n^{2}-3+4 n^{3}-4 n \\
& =\left(n^{4}-4 n^{2}\right)+\left(6 n^{2}\right)-(3)+4\left(n^{3}-n\right)
\end{aligned}
$$

$\left(n^{4}-4 n^{2}\right)$ is divisible by 3 from our hypothesis.
$6 n^{2}$ and 3 are divisible by 3 .
We need to prove that $4\left(n^{3}-n\right)$ is divisible by 3 .
Again use mathematical induction.
Basic step:
For $\mathrm{n}=0$,
$4(0-0)=0$ is divisible by 3 .
Induction hypothesis:
Let $4\left(n^{3}-n\right)$ is divisible by 3 .
Induction step:
$4\left[(n+1)^{3}-(n+1)\right] \quad=4\left[\left(n^{3}+3 n^{2}+3 n+1\right)-(n+1)\right]$

$$
=4\left[n^{3}+3 n^{2}+3 n+1-n-1\right]
$$

$$
\begin{aligned}
& =4\left[n^{3}+3 n^{2}+2 n\right] \\
& =4\left[n^{3}-n+3 n^{2}+3 n\right] \\
& =4\left(n^{3}-n\right)+4.3 n^{2}+4.3 n
\end{aligned}
$$

$4\left(n^{3}-n\right)$ is divisible by 3 from our hypothesis.
$4.3 n^{2}$ is divisible by 3.
$4.3 n$ is divisible by 3 .
Thus we can say that
$\left(n^{2}-4 n^{2}\right)+\left(6 n^{2}\right)-(3)+4\left(n^{3}-n\right)$ is divisible by 3 .
That is,
$n^{4}-4 n^{2}$ is divisible by 3 .

Example 2:

Prove using mathematical induction:
$1+2+3+\ldots+n=\frac{n(n+1)}{2}$
Let $P(n)=1+2+3+\ldots+\mathrm{n}=\frac{n(n+1)}{2}$
Basic Step:
For $n=1$,
LHS =1
RHS $=\frac{1(1+1)}{2}=1$ Induction hypothesis;
Assume that $P(n)$ is true for $n=k$,
Then,
$1+2+3+\ldots .+k=\frac{k(k+1)}{2}$

Induction step:

Show that $P(n)$ is true for $n=k+1$.

$$
\begin{aligned}
1+2+3+\ldots+\mathrm{k}+(\mathrm{k}+1) & =\frac{k(k+1)}{2}+k+1 \\
& =(k+1)\left(\frac{k}{2}+1\right) \\
& =(k+1)\left[\frac{k+2}{2}\right] \\
& =\frac{[(k+1)(k+2)]}{2}
\end{aligned}
$$

That is, $P(n)$ is true for $n=k+1$.
Thus by using the principle of mathematical induction, we proved $1+2+3+\ldots+$ $\mathrm{n}=\frac{n(n+1)}{2}$

Example 3:

Prove using the principle of mathematical induction,
$\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{n}^{2}=\frac{n(n+1)(2 n+1)}{6}$
Let $\mathrm{P}(\mathrm{n})=\sum_{\mathrm{i}=0}^{\mathrm{n}} \mathrm{n}^{2}=\frac{n(n+1)(2 n+1)}{6}$
Basic step:
For $n=1$,

LHS $1^{2}=1$

RHS $=\frac{n(n+1)(2 n+1)}{6}=\frac{1 \cdot 2 \cdot 3}{6}=1$
$P(n)$ is true for $n=1$.
Induction hypothesis:
Assume that result is true for $\mathrm{n}=\mathrm{k}$.
That is,

$$
1^{2}+2^{2}+\ldots+\mathrm{k}^{2}=\frac{k(k+1)(2 k+1)}{6}
$$

Induction Step:
Prove that result is true for $n=k+1$.

$$
\begin{aligned}
1^{2}+2^{2}+\ldots+\mathrm{k}^{2}+(\mathrm{k}+1)^{2} & =\frac{k(k+1)(2 k+1)}{6}+(k+1)^{2} \\
& =(k+1)\left[\left(\frac{k(2 k+1)}{6}\right)+(k+1)\right] \\
& =\frac{(k+1)\left(2 k^{2}+k+6 k+6\right)}{6} \\
& =\frac{(k+1)\left(2 k^{2}+7 k+6\right)}{6} \\
& =\frac{(\mathrm{k}+1)(2 \mathrm{k}(\mathrm{k}+2)+3(\mathrm{k}+2))}{6} \\
& =\frac{(\mathrm{k}+1)(\mathrm{k}+2)(2 \mathrm{k}+3)}{6}
\end{aligned}
$$

Thus it is proved.

Exercise Problems:

1. Prove the following by principle of induction:

- $\sum_{k=1}^{n} k^{2}=\frac{\mathrm{n}(\mathrm{n}+1)(2 \mathrm{n}+1)}{6}$
- $\sum_{i=1}^{n} \frac{1}{i(i+1)}=\frac{n}{n+1}$
- $2 i>1$ for all $i>1$.
- $2^{x} \geq x^{2}$, if $x \geq 4$
- $10^{2 n}-1$ is divisible by 11 for all $n>1$
- $2^{n}>n$, for all $n>1$

